Crop Profile for Dry Beans in Oregon

Prepared: May 2001
Revised: August 2001

General Production Information

- Dry bean growers farmed more than 2 million acres in the United States in 1995. Oregon is not ranked in the top 12 dry bean producing states. (North Dakota is the number one U.S. producer.)
- Oregon produces only 0.2% of the national dry bean crop.
- Oregon growers harvested an estimated 4,340 acres of dry field beans in 1999.
- Malheur County farmers spend $420.73 per acre to produce dry field beans.
- Producers market only the ripe seeds.

Production Regions

The majority of the dry beans grow in Eastern Oregon. Malheur County has the most acres followed by Umatilla, Union, and Jefferson Counties. However, Lane County, which is in Western Oregon, has sizable acreages (3).

Cultural Practices

Dry beans include the common bean, kidney bean, navy bean, black bean, small white bean, pinto bean, lima bean, and others. This report also includes garbanzo beans (chickpeas). Time from seeding the harvest varies from 3 to 6 months. The growing culture is similar to green beans, but these beans ripen prior to harvest, and growers thresh them dry from the pods (4).

Insect Pests

Major insect pests in Idaho, which boarders Oregon on the East, are beet leafhoppers, lygus bugs,
Mexican bean beetles, red-backed cutworms, seed-corn maggots, two-spotted spider mites, western bean cutworms, and wireworms (6).

West Treasure Valley (Eastern Oregon) growers report these pests: cutworms and armyworms, lygus bugs, seedcorn maggots, spider mites, and thrips (7).

Leafhopper control is important because they transmit curly top virus. Leafhoppers can migrate long distances with the summer wind (6).

Chemical controls:

- Eastern Oregon growers use propargite (Comite) and aldicarb (Temik) to control spider mites (7).

- Many of the same insecticides used on green beans also are used on dry beans. For more details on insect control in Oregon beans, dry, go to http://ag.ippc.orst.edu/pnw/insects for the Pacific Northwest Insect Control Handbook, pre-release version 0.80 (8).

Weeds

Weed control usually begins with tillage operations before planting, followed by herbicide applications that require soil incorporation. The herbicides sometimes are banded to minimize costs (6).

Chemical controls:

Selective herbicide use is the most satisfactory and complete approach to weed control in beans (6). The following herbicides are used for annual grass and broadleaf weed control in eastern Oregon: alachlor, DCPA, dimethenomid, EPTC, ethalfluralin, glyphosate, imazethapyr, metolachlor, paraquat, pendimethalin, and trifluralin. Various annual and perennial grasses and quackgrass are controlled with glyphosate, quizalofop P-ethyl, and sethoxydim. Bean growers use bentazon to control annual broadleaf weeds and sedges. They use paraquat as a harvest aid (9).

Oregon farmers grew 1000 acres of garbanzo beans (chickpeas) in 1993 and used the following herbicides 10):

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Brand Name</th>
<th>Area Treated</th>
<th>Number of Applications</th>
<th>lbs. per acre per application</th>
<th>lbs. per acre per crop year</th>
<th>Total application</th>
</tr>
</thead>
</table>
Diseases

Diseases common in Idaho and Eastern Oregon field beans include bacterial diseases (halo blight and brown spot), fungus diseases (root rots, sclerotinia wilt or white mold, and pythium wilt) and virus diseases (bean common mosaic, bean yellow mosaic, curly top, and red node) (6).

Chemical controls:

Oregon farmers grew 1000 acres of garbanzo beans (chickpeas) in 1993 and used the following fungicides (10):

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Brand Name</th>
<th>Area Treated</th>
<th>Number of Applications</th>
<th>lbs. per acre per application</th>
<th>lbs. per acre per crop year</th>
<th>Total application</th>
</tr>
</thead>
<tbody>
<tr>
<td>captan</td>
<td>captan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.04</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>bravo</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>metalaxyl</td>
<td>apron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.03</td>
</tr>
<tr>
<td>thiabendazole</td>
<td>mertect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.01</td>
</tr>
</tbody>
</table>

Cultural controls:

Dry bean cultivars are bred for resistance to Bean Common Mosaic Virus. There are resistant varieties for black turtle, cranberry, navy and small white, red kidney, red Mexican, great northern, pink, and pinto beans (11).

Nematodes
There is no available information on nematodes in dry beans.

Other:

Contacts

Clint Shock and Corey Ransom
Malheur Experiment Station
595 Onion Avenue
Ontario, OR 97914
clinton.shock@orst.edu
corey.ransom@orst.edu

Ben Simko
Malheur County Extension
710 SW 5th Ave.
Ontario, OR 97914
ben.simko@orst.edu

References

2. 1999 Oregon County and State Agricultural Estimates; Special Report 790; Oregon State University Extension Service: Corvallis, OR, revised January 2000.

5. Dry Field Beans: Malheur County, Oregon; Oregon State University Extension Service:
Corvallis, OR, January 1997.

Acknowledgements

This crop profile was prepared by P. Thomson, W. Parrott, and J. Jenkins, Agricultural Chemistry Extension, Department of Environmental and Molecular Toxicology, Oregon State University, and reviewed by B. Simko, Malheur County Extension, Ontario, OR.